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1. Introduction.

Let X1, X2, ... Xn be independent and identically distributed (i.i.d.)

random variables with distribution function (d.f.) P(x) = Pr(X ! x). We consider

the randomly right-censored model where the value of the random variable X is

sometimes unobservable. Associated with each Xi is a variable Yi independent of

X . These Y's are i.i.d. with d.f. Q(x). The observations consist of the pairs

(Zi, 6i), i=1, 2, ..., n, where Zi =min(Xi , Yi
) , 6i =I(XsY), and I(A) is the

indicator function of the set A. Typically the concern of the statistician is

how to best make use of the Z 's and 's to estiate F cr some functicnal of F.

Given that this censoring is to take place another question arises. Suppose

more than one censoring variable is available and the experimenter is given his

choice as to which to use. Which variable should he choose? One approach is to

choose the censoring variable which provides the greatest "information". Thus

we seek general ways to measure information in censored models.

What properties should information measures possess? It is rea-onable to

expect that it is better to observe an X than a Y. Furthermore, stochastically

increasing Y should increase information. Thus we consider the following two

requirements for information measures.

if Y1S Y2' the information in (Zl, 61) is less than the

information in (Z2, 62) where Z i=min(X, Yi) and 6i=I(X!Yi), (1.1)

i= 1, 2, for every X.

For every X and Y the information in X is greater than

(1.2)
the information in (Z, 6), Z=min(X, Y), 6=I(X Y).

'- .. - - - -... - . - %-+ .- -' ,' -,., ',y. ' ., ,, . . . . .. .. . . .. .. .., ,_
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In general (1.2) will follow from (1.1) by taking Y2  so that Z has the

same distribution as X. The adequacy of all information measures considered

here will be with regard to (1.1) and (1.2). If (1.1) or (1.2) fail to hold,

the measure is inadequate. Note that it is the monotonicity of the measure that

is of interest as the measure can be made to increase or decrease by simply

changing the sign in its definition.

In Section 2 notions of bivariate dependence are used to measure informa-

tion. Aodels in which Y is increased stochastically should generally lead to

increased dependence of X and Z. Thus measures of dependence provide a natural

framework for studying information in the censored model.

Various notions of bivariate dependence are considered as candidates for

measures of information. These include positive quadrant dependence (PQD),

association, left-tail decreasing (LTD), right-tail increasing (RTI), and sto-

chastically increasing (SI). Each of these is a notion of positive dependence

which requires a certain probability that the variables are in some quadrant to

be positive. These notions are extended to notions of "more positive quadrant

dependent," "more associated," etc., by requiring that this probability be

increasing. Then these new notions for increased positive dependence are con-

sidered for the role of measures of information. With properties (1.1) and (1.2)

as criteria, it is shown that, with the exception of association, all of these

notions of bivariate dependence are satisfactory.

In Section 3 the relationship between X and Z is explored through their

related probability functions. Since Z is equal to X more often as censoring

decreases it should be true that the probabilistic structure of Z should approach

that of X as censoring decreases. One way to measure closeness of probability

distributions is by coefficients nf diveigctco cuncrni cip'nr of thozo mtaiurci

................................... ......................................................* .
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have been proposed independently by Csisz~r (1963, 1967), Ali and Silvey (1965a,

1965b, 1966), and Ziv and Zakai (1973).

We use the following conventions: For a function f,

f(O) = lir V (x)
x-O

0 . f(o) 0 (1.3)

S f(a =lima f(x) a>0.

Let f(x) be a convex function. Let a(x) and B(x) be nonnegative measurable

functions on some measure space (X, A, P). Then the coefficient of divergence

for a(x) and B(x) is defined by

If(a, (xBx) f (-- }dP(x). (1.4)

For probability density functions p1 (x) and P2 (x), both absolutely continuous

with respect to some measure X, (1.4) becomes

IP 2 (x) I1

If(Pl, p 2 ) = fP l (x) f p(x(dx) (1.5)

This is the measure introduced by Csiszhr. Ali and Silvey use a slightly

different version defined by:

I( ) E*if( )1 f()dP 1 + P2 (N) 1ir f([  (1.6)

where * is the generalized Radon-Nikodym derivative of P2 with respect to P and

N is a P -null set where P2 has positive measure. Note that if p1 and P2 are

mutually absolutely continuous, then (1.5) and (1.6) are identical.

For the censored model we need to find a satisfactory way to define p1 and
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P2 in terms of X and Z. These must be designed with (1.1) and (1.2) in mind. In

Theorem 3.2 we show that if pl and P2 are taken to be the survival distributions

of X and Z respectively, (1.1) and (1.2) are satisfied. It would seem more

natural to let p1 and P2 be the respective densities of X and Z but Example 3.3

shows that this is unsatisfactory. However, if in (1.5) P2 is taken to be the

joint density of X and the vector Z= (Z, 6), and p1 is taken to be the product

of the X and Z marginals, then (1.1) holds with some restrictions on the convex

function f(x), and the density function of X, p(x). Property (1.2) holds without

any restrictions.

2. Measures of Bivariate Dependence.

Dependence measures have typically been developed to test for independence

between two variables or to measure the degree to which large values of one

variable go with large values of the other. Some general notions of dependence

are given in the following definition.

Definition 2.1. Given two random variables U and V we say that U and V are:

1) Positively quadrant dependent (PQD) if Pr(U : u, V ! v)2t
(2.1)

Pr(U 5u)Pr(V!5v) for all u, v.

2) Associated if Coy {F(U, V), A(U, V))2O, for all r, A
(2.2)

which are componentwise increasing.

3) Left-Tail Decreasing (LTD(VIU)) if Pr(V-5vlU u) is
(2.3)

decreasing in u.

4) Right-tail Increasing (RTI(VIU)) if Pr(V >vI, > u) is
(2.4)

increasing in u.

-- * .- * . . ***
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1 - % .7 "7 . .

5) Stochastically Increasing (SI(VIU)) if Pr(V> vIU--u) is
(2.5)

increasing in u.

These notions are ordered in strength by:

SI(VIU) o RTI(VIU) =.Association * PQD. (2.6)

The sequence of implications is the same when RTI(VIU) is replaced by

LTD(VIU). For verification of the implications and counterexamples to the

reverse implications, see Barlow and Proschan (1975). Most of the above defini-

tions were originally given in Lehmann (1966). The notion of association was

introduced in Esary, Proschan, and Walkup (1967).

The inequalities in (2.1) - (2.5) are notions of positive dependence for a

pair of variables. Next we compare the dependences of two sets of variables,

specifically, between the variables X and Z and X and Z2 where Zi =min(X, Y.),

i= 1, 2. For this a slight generalization of Definition 2.1 is needed.

Definition 2.2. Given four random variables U1, U2, VI, V21 form two pairs

of variables W1 = (U, VI) and W2 = (U2 , V2 ). lie say that:

1) 3_ is more PQD than 2 if for all u, v,

Pr(U1 :u, V1 sv) - Pr(U1  u)Pr(V1 :v) 2 (2.7)

Pr(U 2 u, V2 < v) - Pr(U2 < u)Pr(V2 < v).

2) n is more associated than 117 if

coy {r(n), A(_ 1)}-Cov {r(Lv2), A(2) , (2.8)

for all componentwise increasing functions r, A.

I ! ,--.-..',', ':'. ''..0 -"h':- ; ;'/-/ -'/ - " <: -i '-2 /-." X ' - -..-. :'L--.< - .- -./.- ,:. -. -' -i " i
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3) 1 is more LTD than 11 if

Pr(V1SvIU u)-Pr(V!5VUu) ->

Pr(V 2 s vIU :< u') - Pr(V2 s vU <- u) (2.9)

for all v, u'<u.

4) 1 is more RTI than if

Pr(V I > vJU > u) - Pr(V v U > u') -

Pr(V2 > vJU > u) - Pr(V2 > vJU > u') (2.10)

for all v, u'<u.

5) W is more SI than L if

Pr(V 1 >vIU = u) - Pr(V 1 >vIU=u') >

Pr(V 2 > v[U = u) - Pr(V2 > vjU = u-) (2.11)

for all v, u'< u.

With this definition, comparisons in the censored model can be made.

Theorem 2.3. In the censored model the amount of positive quadrant depend-

ence increases as censoring decreases stochastically. That is, if Y1 S Y2 and

Z. =min(X, Yi), i=1, 2, then (X, Z2 ) is more PQD than (X, Z1).

Proof: Consider Pr(X_ :x, Zi z) - Pr(X_ x)Pr(Z < z). There are two cases.

1) If x< z, then

Pr(X: x, Z i < z) - Pr(X x)Pr(Z S z)

= Pr(X S x) - Pr(X _- x)Pr(Zi ! z) - P(x){l - Ki(z)}

= P(x)K. (Z) P(X)P(z) ()i (z)

where K. (z) = P(z)Q. (z'), the survival function of Z.1 1 1 I
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2) If x>z, then

Pr(X : x, Z. : z) - Pr(X : x)Pr(Z. ! z)

=Pr{Xsx, min(X, Yi ) z1-Pr(Xgx)Pr(Zi 5z)

= Pr(X!5z) + Pr(z<5X!5 x, Yi: < z ) '- Pr (x ~s x ) P r ( Z 
i 9 z )

=P(z) +{P(x) -P(z)} Q.(z) -P(x) {l-P(z)Qi(z))

=Qi(z) {P z) - P(x) Px)P(z) =Qi(z)P(Z)P(x).

With Theorem 2.3 it is easy to construct a class of measures for which (1.1)

and (1.2) hold by taking averages of increasing functions of these positive

quadrants. The following theorem is an easy consequence of Theorem 2.3.

Theorem 2.4. For any increasing function *, J*(Pr(X gx, Z!5z) -

Pr(X!<x)Pr(Z <z)}dxdz will increase as censoring decreases stochastically.

Corollary 2.5. Coy (X, Z) increases as censoring decreases stochastically.

Proof: Coy (X, Z) = Jf{Pr(X < x, Z- z) - Pr(X : x)Pr(Z < z)}dxdz and so the result

is immediate from Theorem 2.4. i

Covariance is, of course, a well known measure of positive dependence.

Many other such measures can also be shown to increase as censoring decreases

stochastically. To show this, we state the following theorem.

Theorem 2.6. Let (Ut. V!1)), i= 1, ... , n, be independent and identically

distributed. Let (U., V 2 ), i= 1, ..., n be independent and identically dis-

tributed with (Ui. 01)) more PQD than (Ui, v!2)), i=1, ... , n. Let r, s be

concordant functions, that is, both r and s monotonic in the same direction in

each argument. Then {r(U, ... Un), s(V I ' "''' V 1 ))}n is more PQD than

(2) .)(2)}{r(Ul' " ' Un) SCVl ' " ' Vn "-
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The proof is by induction along the lines of Theorems 1 and 2 of Lehmann

(1966).

Corollary 2.7. Kendall's T, Spearman's ps , and Blonqvist's q all increaso

as censoring decreases stochastically.

Proof: Kendall's T=COv(sign(X2 -Xl), sign(Z 2 -Zl)) and hence is increasing by

Theorem 2.6 and Corollary 2.5. Spearman's ps =3Cov(sign(X2 - X1 ), sign(Z 3 - Z1))

and is increasing oy Theorem 2.6 and Corollary 2.5. Blomqvist's q=

- 2{Pr(X>mx , Z>mz) +Pr(Xm x, Zm z)1- 1 where mx and mz are the medians of X

and Z respectively. This reduces to 2{Pr(X > mX Z > m z) - Pr(X > m x)Pr(Z> m z) +

* Pr(Xs -m x , Z!<m z) - Pr(X -m x)Pr(Z m ), which (from Theorem 2.3) increases as

" censoring decreases stochastically. II

So the simple notion of positive quadrant dependence has yielded a large

class of measures which can be used in the censored model. It is reassuring to

note that these include some of the well-known measures of dependence. The next

notion in the chain of (2.6) is association.

In Example 2.8 we show that even though there is less censoring, association

ray decrcase. This is cunter to the thene of (1.1) and so association is inap-

propriate as a measure of information in the censored model.

Example 2.8. Let r(X, Z) =I(X>x >Z>z), A(X, Z) =I(X>x2, Z>z

i--l, 2, and let xl<x2<Zl<z2. Then Coy {r(X, z AP(z)Q(z) -
i=1 ,adltx1 <X2 1 Z.) I(X <.}2' i 2) (

P(z1)Q.(z 1 )p(z2)Qi(z2) =P(z2)Qi(z2){l- P(ZI)Qi(zi)). Choose P, Q1 11 Q2 so that

P(zl) = 1/2, Ql(z 1) =I, Q2(z) 1/2, P(z2) 1/4, Q1 (z2) 5/12, Q2(z2) =1/3. Note

that QI(zi)? Q2 (zi), i= 1, 2. Then Coy {F(X, ZI), A(X, ZI)} =5/96, and

Coy {r(X, Z2) L(X, Z2))=6/96.

Thus a chain of implications similar to (2.6) using (2.7) - (2.11) is not
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possible. This leaves the last three notions: LTD, RTI, and SI.

Theorem 2.9. If Y 11tY 2 then

Mi (X, 2) is more RTI than (X, Z 1 ),

(ii) (X, 2) is more LTD than (X, Z1) and

(iii) (X, 2) is more SI than (X, Z 1).

Proof: i) Let x< x. Then

Pr(Z > zjX > x) - Pr(Z > zIX > x')
(2.12)

={Pr(X >z,Y >z, X >x)/Pr(X >x)1-{Pr(X >z, Y >z,X > x)/Pr(X >x)}

There are three cases to consider.

1) Let x> x'>z. Then (2.12) reduces to Pr(Y> z)- Pr(Y> z) =0.

2) Let x> z> x'. Then (2.12) reduces to Pr(Y> z) - [Pr(X> z, Y> z)/Pr(X> x')}

Q~z~l -f(z)/f(x')}]. This decreases as Q(x) decreases.

*3) Let z> x> x. The (2.12) reduces to F(z)q(z)[{l/Pf(x))- {1/P(x')}I

f (z)Q(z) Of(X) - (X,) [(P(x')- -(x)}, which decreases as Q decreases.

The proofs for LTD and SI follow in an analogous fashion. I

Now as in the positive quadrant dependence case, classes of measures of

information can be generated with Theorem 2.9.

Theorem 2.10. Let be an increasing function. Then

(1) ff~~PP(Z5j: ) -Pr(Z:5zIXix)} dxdx'dz -4, increasing as censoring

decreases stochastically,

(2) fz.. ~rZ>j >x-Pr(Z> zIX>x')} dxdx'dz is increasing as censoring

decreases stochastically,
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(3) f Z ux<x f{Pr(Z> zjX = x) -Pr(Z> zjX= x')\ dxdx'dz is increasing as censoring

decreases stochastically.

3. Coefficients of Divergence.

When X<Y we have Z=X. Since the variables X, Z are often equal, in some

sense their underlying probabilistic structures should be similar. From Kullback

(1959), coefficients which increase as two distributions become less similar are

called coefficients of divergence.

Csisz~r (1963, 1966) generalized the Kullback-Leibler information number

in the following fashion. Let f(x) be a convex function on R satisfying (1.3).

Let uI and u2 be two probability distributions on some measurable space

(X, A). Let A be a measure on X, A) such that ui is absolutely continuous with

respect to A, i = 1, 2. Let pi be the Radon-Nikodym derivative of ui with respect

to A. Define

If(u 1' u2)=fpl(X) f Lp- x 1 (dx). (3.1)
p1(x) Ad)

If(u1 , u2) is the f-divergence of u1 and u2.

From a completely different point of view, Ali and Silvey (1965a, 1965b,

1966) and independently Ziv and Zakai (1973) obtain an expression similar to

(3.1). Both pairs of authors consider coe c(i \ NcvAwhich measure the distance

between two probability measures. Ali and Silvey postulate four properties which

they believe thecc(i A d(P1, P2) should satisfy:

1) d(PI, P2) should be defined for all measures Pl and P2 in the

sample srace.

IL -Ilk..~. - , ~ '.
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2) d(P1, P2)zd(P1tl P2 t l) for all measurable transformations

y = t (x).

3) d(P1 , P1) Sd(P1 , P2) for all P2 ' and if P1 is singular with respe't

to P2 P d(Pl' P2) >d(Pl, P3) for all P3.

4) Let (P0 ; 0c(a, b)) be a family of distributions with densities

P0 (x) having monotone likelihood ratio in x. Then if 0 < 62 < 03 ,

d(PoI , Pe ) - d( 2 1 P0)-
1 2 1 3

With these four postulates they define the coefficients of divergence as:

df(P1 , P2) =E*[f4)] < of )dP I  +P 2 (N) limf ()/0 , (3.2). 4. CO

dP2
where f(x) is a convex function, Od_ , and N is a P -null set where P has

d1 1 2
positive measure. The only difference between (3.1) and (3.2) is the dominating
measure X. The two measures will be identical if P1 and P2 are mutually abso-

lutely continuous. Note that the measures (3.1) and (3.2) are not symmetric in

1
and p2. However if g(x)= xf(-) then I( p)= I(p, pl). Further g is

1 *x f(lP2 g(2 1
convex if and only if f is convex. Define a new functicn f*(x) = f(x) +g(x); then

the measure If*(Pl' p2) will be symmetric.

With the criteria (3.1) and (3.2), measures of information in the censored

model can be generated by carefully choosing P1 and P2 in terms of X and Z. Note

that P and P2 need not be probability measures. It is enough that both be inte-

grable functions and the dominating measure be sigma-finite. Then the following

can be used for information in the censored models.

Definition 3.1. Let X and Y have support on the positive real line. Then

the information in the censored model is defined as in (3.1) where
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Px)= Pr(X> x), the survival function of X and p2 (x) =Pr(Z> x), the survival

function of Z.

Theorem 3.2. With p, and P2 defined as in Definition 3.1, 1f~pl, P2)

increases as censoring decreases stochastically.

Proof: Property (4) of Ali and Silvey (1966) will be used. We establish a par-

tial ordering by saying a1I< if Y a aY a The minimum for ai corresponds to

the uncensored case. Let xI< x 2, and note

F(X 1 ) F(x 2 ) ( ) x ) i x i x
1 2 2) - x1)1P(x 1 )Q(x1 ) P(x 2 )Q(x 2)1 Px)~ 2

which is ncgative fcr all x 2 < x 1  Thus the monotone likelihood ratio property

holds. 11

With this definition both (1.1) and (1.2) follow. At first it would seem

*that the more natural choice for p1 and p2 in (3.1) would be the density functions

of X and Z. Since X= Z when X< Y it seems reasonable to postulate that the den-

* sity of Z should approach that of X as censoring decreases. The following example

* shows that this need not be the case.

xaple 3.3. Let X be defined on the points xi, x2, V3 x4, 3 x6,' wt

Pr(X =x.)1/12 for i=l1, 2, 3, 5, 6, 7, and Pr(X csx 4) 1/2. Define three

censoring variables Y, Y 2 Y 3, also with support on {x1 , x 2, x3, N4 , x., x6 , X7 1

* satisfying:

Pr(Y 1 = x 1 /12, i =1, 2, 4, 5, 6, 7 Pr(Y = x3 )=l1/2,

Pr(Y 2 = x )=1/12, i=l1, 2, 3, 5, 6, 7 Pr(Y 2 = x4 ) =1/2,

*Pr(Y = x 1=/12, i =1, 2, 3, 4, 6, 7 Pr(Y = x5 =l1/2.

3 i3
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Note that Y1S 2SY 3' Let Yi be independent of X, iul, 2, 3, and let Z.

be the censored variable associated with Y.. It should be true that

If( X, Z1) > If(X, Z2)> If(X, Z3 ), so that the least censored variable is the

least divergent from X and the most censored variable is the most divergent.

We need to compute If(X, Zi). Note that X and Zi are mutually absolutely

continuous, so that X(x) in (3.1) is the counting measure. Also, if X= Y, we

adopt the convention that a death has been observed. Then with this convention,

direct calculations show that the vectors of probabilities {Pr(Zi =X),

Pr(Zi = x7)} are for i =1, 2, 3 respectively, (23/144, 21/144, 64/144, 27/144,

5/144, 3/144, 1/144), (23/144, 21/144, 19/144, 1/2, 5/144, 3/144, 1/144), (23/144,

21/144, 19/144, 57/144, 20/144, 3/144, 1/144). Then direct substitution into

(3.1) yields

If(X, Z1 ) = (1/12)f(23/12) + (1/12)f(21/12) + (1/12)f(16/3) + (1/2)f(3/8)

* (1/12)f(5/12) + (1/12)f(3/12) + (1/12)f(1/12)

If(X, Z2 ) = (l/12)f(23/12)+ (1/12)f(21/12) + (1/12)f(19/12) * (1/2)f(l)

+ (1/12)f(5/12) + (1/12)f(3/12) + (1/12)f(1/12),

If(X, Z3 ) = (1/12)f(23/12) + (1/12)f(21/12) + (1/12)f(19/12) + (1/2)f(57/72)

+ (1/12)f(20/12) + (1/12)f(3/12) • (1/12)f(1/12).

Thus,

If(X- Z1 ) - If(X' Z2 )f(1/12)f(16/3).(1/2)f(3/8)-(1/12)f(19/12)-(1/2)f(l),

If(X, Z2) - If(X Z3 )=(1/2)f(l).(1/12)f(S/12)-(1/2)f(S7/72)-(1/12)f(20/12).

Take f(x) =x 2 . Then

If(X, Z) - If(X, Z2) =1.73>0.

If(X, Z2)- If(X, Z3) =-.0304!0.
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The above inequality reverses the expected order. Why does this happen?

Note that X has a large mode at the point x4. In the censoring variables, Yi#

the mode moves from x3 to x4 to x5 . As the mode of Yi moves toward the mode of

X, Zi resembles X more and more. Mhen the mode of Yi reaches that of X, Zi will

resemble X closely; Z. will be unimodal at the same point as X. Now as the mode

of Yi continues moving to the right, Zi no longer has such large probability at

x4 . If the mode of Yi continues to the right, eventually Zi becomes bimodal and

thus Zi appears to be different from X by a substantially greater amount than

when the modes are equal.

Thus Example 3.3 shows that with the choice p1 the density of X, P2 the

density of Z, criterion (1.1) fails to hold. It is true however that for this

choice of pl, P2 the measure does satisfy (1.2). This follows immediately from

Lemma 1.1 of Csiszar (1967) or from Property 3 of Ali and Silvey (1966).

In order to develop a more satisfactory measure we consider the vector

Z = (Z, 6) and return to the concept of dependence.

Consider X and Z as the two variables of interest; then the f-divergence of

the Radon-Nikodym derivative of the joint distribution of X and Z with respect to

the product of their marginals is the information measure.

Note that the joint density of X and Z puts positive probability on the line

where X =Z, the 450 line passing through the origin. This line has zero two-

dimensional Lebesgue measure. Thus p1 and p2 defined as the joint distribution

of X and Z and the product of the marginals are not mutually absolutely contin-

uous. Hence the measures in (3.1) and (3.2) are no longer equivalent. Equation

(3.2) is now useful only if limf(x)/x is finite. Equation (3.1) requires a
X-+O

measure A(x) which dominates both the joint density of X and Z and the product of

the marginals. Let X(x) be the sum of two-dimensional Lebesgue measure and a

measure u, which is Lebesgue measure on the 450 line, ((x, y): x =y, x >0, y >0).
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For the joint probability measure of (X, Z_, we write Pr{X=x, Z= (z, 0)1=

p(x)q(z), for x>z, 0 otherwise, and Pr(X=x, Z= (z, 1))=p(x)Q(x), for x=z,

0 otherwise. Then (3.1) becomes

Ifpp " POpZ = ~~)¢ q J p ( x ) Q( x ) x
f Pp , PX X )=f ()p() ~)f(x) p x)"q(x) Id

fxfz xp ( x ) q ( z )
'

( z f P(x)q(z).__ dzdx,

which reduces to,

f'op(x)p(x)Q(x)f{l/p(x)}dx fmq(x)P(x)}(x)ff l/P(x) )dx. (3.3)

Take g(x) =xf(l/x); then (3.3) becomes

1 p = fOp(x)Q(x)g{p(x) )dx + foq(x)P(x)g{P(x)ldx. (3.4)

The expression in (3.4) can be viewed as a loss function. In this case the

amount g{p(x)) is lost when X =x is observed. If a censored observation is

observed at time x, the loss is g(P(x)). Now if censoring increases stochastic-

ally, losses g(P(x)) occur more frequently while losses g(p(x)) occur less fre-

quently. The original premise was that increased censoring leads to decreased

dependence so that the joint distribution should be closer to the product of the

marginals. Thus the f-divergence should decrease as censoring increases. Thus

if g(P(x)) gg(p(x)) the monotone criterion in (1.1) is satisfied.

Equation (3.4) can be rewritten as

I (pxp Z , pXZ ) =f oq(z)[Jfp(x)g(p(x)}dx P(z)g{P(z)}]dz. (3.5)

This measure is equivalent to a measure of information in the discrete case

developed in Hollander, Proschan, and Sconing (1985). Now if censoring increases

stochastically (3.5) should decrease. This is equivalent to the term
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*(z) = 0p(x)g(p(x))dx+P(z)g(PF(z)) being increasing. Assume g is d,(e'A, c, AW )A

"(z) = p(z)g{p(z) - p(z)P(z)g,{P(z) I- p(z)g{P(z) ),

which is positive if and only if for every z

g{p(z) I >(z)g{P(z)} + g{P(z)}. (3.6)

Unfortunately inequality (3.6) is not always satisfied. For example, take

g(x) a-logx and P(x) = exp{-Xxl; then the direction of the inequality depends on X.

However some conditions can be found for g(x) and p(x) so that (3.6) is satisfied.

Two such conditions are:

Cl: g decreasing on [0, 1] and p(z)(P(z)) "  2

-1C2: g increasing on [0, 1] and p(z)(P(z)} 22

Theorem 3.4. If either Cl or C2 hold and g'(x) is continuous on [0, -], then

Sg(Pxpz,-Pxxz is decreasing as censoring increases stochastically.

Proof: It is enough to show (3.6). Expand g(p(z)) in a Taylor series about

P(z). Then

g{p(z)} > g{P-(z) I+ g'{F(z) }{p(z) - P(z)}

2g(P(z)} P-(z)g'{P(z)} + g"{P(z)}{p(z) - 2P(z))

2tgP{(z) + (z)g'{(z) },

if g'(P(z)}{p(z) - 2P(z)} >0, which holds if Cl or C2 hold. I[

In terms of the original function f(x), g(x) decreasing is equivalent to

f(x)/x increasing, 15< -. Most of the functions f(x) which are commonly used

in f-divergence satisfy the necessary condition.



- 17 -

Example 3.5.

1) f(x) a xlogx g(x) .- logx Kullback-Leibler
Information number

2) f(x) = (1/2)(x - 1) 2  g(x)P= (1/2)(x - 1)2  Hellinger metric

3) f(x) = (1/2)Ix- 1i g(x) = (1/2)Ix- ii city-block distance

4) f(x) g(x)= (x- 1) 2/x X2-distance

It is easy to verify that in the above four cases, g(x) is decreasing. Note

that the third function does not satisfy the conditions of Theorem 3.4. However

the ordering still holds under slightly more restrictive conditions.

Theorem 3.6. If g is decreasing on (0, 1) and p(z)(P(z))- 1 I, then

1 9g(pxpz' pXZ) is decreasing as censoring increases stochastically.

Proof: If g is decreasing and p(z)/P(z)< 1, g(p(z)}> g(P(z)}. Equation (3.6)

follows since g'(x)<0 on (0, 1). II

These last two theorems use the divergence measure as defined in (3.1). As

was stated previously (3.2) is not satisfactory unless lim f(x)/x< -. Of the

four functions cited in Example 3.5 only the second and third functions fit this

criterion. In particular the third function, f(x)= (I/2)jx- 11 is the one orig-

inally proposed by Ali and Silvey (1965a) for measuring dispersion between the

joint distribution of two variables and the product of their marginals. In the

censored model, the set N corresponds to the set where X =Z, or equivalently, when

X:<Y. Then (3.2) becomes

df(pxxz. pxp4) o ro q (x)T 2 (x) f{ /P(x) }dx + cJ4p (x)Q(x)dx (3.7)

where c = lim f(x)/x.
X -1. o
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Theorem 3.7. If f is such that lim f(x)/x =c< - and f(x)/x is increasing

for I< x< -, then df(pxxz, pxpz) increases as censoring decreases stochastically.

Proof: Consider (3.7) as an expected loss over the variable Z with loss

P(x)f{l/P(x)} when Z-x and Y< X, and loss c when X:5Y. So the loss function can

be written as P(x)f{l/P(x))I(Y<X) +cI(X<Y). As Y increases stochastically,

so does Z. Since f(x)/x increases to c as x increases, the loss function is

increasing. Hence the expected loss increases. I1

• In Example 3.5 both the Hellinger metric and the city-block distance satisfy

* -the conditions of Theorem 3.7. The conditions in Theorem 3.7 are less restric-

tive than those of Theorem 3.4 in the sense that there is no condition on the

distribution of X. Of course the conditions in Theorem 3.7 are more restrictive

in the sense that they allow far fewer functions f.
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